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Abstract

We partially classify Moore bipartite graphs. We prove that a Moore bipartite graph G exists only when
the diameter is 2, 3, 4 or 6. However, for the diameters 3, 4 and 6 a full classification is missing; only
graphs of degree k, where k—1 is a prime power, have been constructed [I} [4]. Similarly to the proofs of the
non-existence of Moore graphs for £ > 3 and D > 3 given in [2] [6] and the non-existence proofs of Moore
bipartite graphs for k > 3 and D =5, D > 7 presented in [2, [II], our proof relies on the integrality of the
multiplicity of an eigenvalue. We prove that, unless D = 2,3,4 or 6, the multiplicity of some eigenvalue
other than +k of the adjacency matrix of G is not an integer. Almost nothing is new in our approach, but
we want to show the strength of equitable partitions and walk-regularity in tackling these sort of problems,
approach followed by Godsil in [6]. Our emphasis is on the clarity of the presentation, and we believe these

notes may have some methodological and pedagogical value.

1 Introduction

A general upper bound for the maximum number N g) p of vertices in a bipartite graph of maximum degree

A and diameter D is given by the so-called Moore bipartite bound, denoted by M& D-

The fact that Nng is well-defined for any A > 2 and D > 2 can be seen by considering the (A, D)-broom

graph, a path of length D — 1 > 1 with A — 1 > 1 additional vertices connected to one of its ends.

To deduce the Moore bipartite bound, we can use the standard decomposition for a graph of even girth with
respect to an edge ab. Let ab be an edge of a bipartite graph G of maximum degree A and diameter D. Define

the sets A; and B; for 0 <7 < D — 1 as follows.

A;
B;

{ce V(G)|d(a,c) =i,d(b,c) =i+ 1}
{c e V(G)|d(b,c) =i,d(a,c) =i+ 1}

The decomposition of G into the sets A; and B; is called the standard decomposition for a graph of even girth

with respect to the edge ab [3].
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Since G is bipartite, its girth g(G) is even, and A; N B; = @ for 0 < i < D — 1. Let the edge ab be in a
cycle of length ¢g(G). Then, |A1|(|B1]) < A =1 and |A4;|(|B;]) < (A —1)|Ai—1|(|Bi-1]) for all ¢ such that

2<i< @ — 1, and consequently, we have |A;|(|B;]) < (A —1)% for 1 <i < @ -1

Since g(G) < 2D, it follows that

D-1 D-1
Z |A;| + Z | B;|
i=0 i=0

AN

2(1+(A—1)+(A—1)2+...+(A_1)D—1)

9A-1P—-1 e A9
_ = (1)
2D ifA=2
The right-hand side of Equation is the Moore bipartite bound. A bipartite graph of degree A, diameter D,

and order equal to M& p is called a Moore bipartite graph. It can be easily seen that such a graph is regular

of degree A and girth 2D.

The Moore bipartite bound represents not only an upper bound on the number of vertices of a bipartite graph
of maximum degree A and diameter D, but it is also a lower bound on the number nj 4 of vertices of a regular
graph G of degree A and girth g = 2D [2].

In the latter context if G has order M g) p then G is the incidence graph of a generalized D-gon of order A — 1.

Incidence graphs of generalized D-gons of order A — 1 and Moore bipartite graphs of maximum degree A and

diameter D are different names for the same class of graphs.
As the graphs we will deal with are regular, we will use k£ rather than A to denote their degrees.

For k =2 and D > 2 Moore bipartite graphs are the cycles on 2D vertices. When k > 3 the rarity of Moore
bipartite graphs was settled by Feit and Higman [5] in 1964, and independently, by Singleton [I1] in 1966.
They proved that such graphs exist only if the diameter is 2, 3, 4 or 6. Our proof of this assertion relies
on the use of equitable partitions [7, 9] and the fact that Moore bipartite graphs are walk-regular graphs, in

particular, distance-regular graphs.

For D = 2 and each k£ > 3 the Moore bipartite graphs of degree k are the complete bipartite graphs of degree

k. For D = 3,4,6 Moore bipartite graphs of degree k£ have been constructed only when k — 1 is a prime power
.
The question of whether or not Moore bipartite graphs of diameter 3, 4 or 6 exist for other values of k remains

open, and represents one of the most famous problems in combinatorics.

2 Notation and Terminology

The vertex set V of a graph G is denoted by V(G), its edge set by E(G), and its diameter D(G).

The set of vertices at distance ¢ from a vertex x in G is denoted by N;(z). The distance between vertices u

and v is denoted by d(u,v).



Given A, B C V(G), a path P =z ...x; is called an A — B path if V(P)N A = {x¢} and V(P)N B = {z;}.
We write a — b path instead of {a} — {b} path.

For a matrix M, M7 denotes its transpose, and W (x) its characteristic polynomial (if M is the adjacency

matrix A(G) of a graph G, we may use ¥(z) instead). The identity matrix of order n is denoted by I,,.

The multiplicity of 6 as an eigenvalue of A(G) is denoted by m(6).

3 Equitable Partitions

This section is mainly based on [7, Chapter 5] and from [9, Chapter 9].

Let m = {C4,...,C,} be a partition of the vertex set of a graph G. We call the subsets C; cells. A partition
m = {C,...,C,} is equitable if, for any vertex v € C;, |[N(u) N Cj| = ¢;;, viz., |N(u) N C;| is independent
of the selection of u. The quotient of G under 7, denoted by G/, is the digraph with the r cells of 7 as its

vertices and c¢;; arcs from the vertex C; to the vertex Cj.

For a partition 7 we define the characteristic matriz P(w) to be the |V(G)| X r matrix such that

1 if the vertex i belongs to the cell C;
(P)ij =

0 otherwise

For each u € V(G) let II,, be the set of equitable partitions having C,, = {u} as their first cell, and II; the
set of equitable partitions having a singleton Cp as their first cell. From now on, let 7 denote an equitable

partition, and let P := P(n), H := G/n, H, := G/m, if 7, € II,,, and n = |G].

Note that PT P is diagonal, and nonsingular since (PT P);; = |Cy;|, where |Cj;] > 1.

Lemma 3.1 ([9, Lemma 9.3.1]) Let 7 be an equitable partition of the graph G, with characteristic matriz
P. Then A(G)P = PA(H).

Lemma 3.2 ([7, Lemma 5.2.2]) (a) If A(H)x = 0z then A(G)Pxz = 6Px.
(b) If A(G)y = 0y then yT PA(H) = 0y P.

(c) Yy (z) divides Vg(x).

Lemma 3.3 ([7, Lemma 5.3.1]) The number of C; — C; walks of length | in G is equal to |C;| times the

number of i — j walks of length | in H.

Corollary 3.1 ([7, Corollary 5.3.2])

Corollary 3.2 ([7, Corollary 5.3.3]) Foru € V(G), let m, € IL,. Then

Voriuy (@) Ya e,y (@)

\Ilg(x) \I/Hu (:c)




Suppose that for each vertex u € V(G) there is an equitable partition m, € II,. If 27 = (z1,...,2,) is an
eigenvector of A(G) with respect to the eigenvalue 6 then x7 P will be a left eigenvector of A(H,,) with respect
to the eigenvalue 6 iff 27 P # 0. If 27 P = 0 then x,, = 0. As not all components of = can be zero, there exists

at least one v € V(G) such that 27 P # 0, and thus, 6 is an eigenvalue of A(H,).

Theorem 3.1 ([7, Theorem 5.3.4]) Suppose that for each vertex v € V(G) there is an equitable partition

my € . If 0 is an eigenvalue of G, then

m(f) = lim w — lim U\ {cu)(@)(z — 9).

z—0 \1’0(.23) z—0 weV(G) \I/Hu (JZ)

Corollary 3.3 ([8, Corollary 3.6]) For each eigenvalue 6 of G, there is at least one u € V(G) such that

for any m, € IL, we have that 0 is an eigenvalue of A(H,).

3.1 Walk-regular Graphs

We say that a graph G is walk-regular if, for any vertices u,v € V(G), ¥/ 1uy(2) = Ya) 103 (2).

Let Wuo(G,2) = 3_,,50(A™(G))uwa™, that is, Wy, (G, x) denotes the walk generating function counting the

walks starting at the vertex w and finishing on the vertex v.

Lemma 3.4 ([7, It follows from Lemma 4.1.1]) Let u € V(G). Then,

v (x71)
_ -1 *G/{u}
Wuu(G,2) =2 Vo)

From Lemma it follows that 2= W, (G, 27 1) = %, so for a walk-regular graph G, W, (G,x71) is

independent of the selection of u.

Therefore, G is walk-regular if, for any u € V(G), the number of closed walks starting at u is independent of

u, that is, A™(G) has a constant diagonal for any m € N.

Using Corollary if G is a walk-regular graph, Theorem can be simplified as follows.

Theorem 3.2 ([7, Corollary 5.3.4]) Let G be a walk-regular graph, © any partition in I1;, and 6 an eigen-
value of G. Then

V() _ Waen (@)
Vg(r) V()

and therefore,

V(e (@)(z —0)

m(f) = lim n

z—6 \I/H(l‘)
or equivalently,
V(e (0)
m(f) =n——m——=
O =0

(setting Uy (x) = (x — 0) f(x), it follows that ¥y (x) = (x — ) f'(z) + f(z), and thus, U (0) = f(6)).



3.1.1 Distance-regular Graphs

An important class of walk-regular graphs is the class of distance-regular graphs. A graph is distance-reqular
if, for any u,v € V(G) and any i € N, the number |N(u) N N;(v)| depends only on dg(u,v). We define the

distance partition of a graph G to be {No(u), ..., Np(a)(u)}. Alternatively, a graph G is distance-regular if
(a) for each u € V(G), the distance partition is equitable, and
(b) the isomorphism from H, to H, maps u to v.

Let G be a distance regular, 7, the distance partition with respect to w, a; = |N(u) N N;(v)|, b; = |N(u) N
Nit1(v)], and ¢; = |N(u) N N;—1(v)|, when d(u,v) = 4. Then

0 by
ca a1 b 0
C2 ag bz
C3 as b3
A(Hu):
0 ¢p-1 ap-1 bp_1

CpD ap
Note that for any two vertices u,v € V(G), we have that A(H,) = A(H,) = A(H). Therefore, by Corollary
and Lemma ¢), we obtain the following.

Proposition 3.1 The minimal polynomials of A(H) and A(G) coincide.

4 Moore Bipartite Graphs

From now on, let G denote a Moore bipartite graph of degree k and diameter D.

Proposition 4.1 ([2, Proposition 23.1(2)]) Let 7 = {C1,...,Cp} be a distance partition of V(G). Then,

m is equitable and G is distance-regular with the following quotient matrix:

0 k
10 k-1 0
1 0 k-1
1 0 k-1
A(H) =
0 1 0 k-1




Proof. It suffices to prove that G is distance regular. Let u,v € V(G) such that d(u,v) =i for 1 < i < D.
Clearly, a; =0 for 1 <i< D. For1 <i< D —1¢; =1, otherwise in G there will a cycle of length at most
2D — 2. For v = D, as G is bipartite, cp = k. For 1 <¢ < D —1, as G is bipartite of girth 2D, b; = k — 1 and

bp =0. O

By Proposition [3.1] any eigenvalue 6 of A(H) is an eigenvalue of A(G). Our aim is now to prove that m(6) is

not an integer for some 6. We first need to find a formula for m(9).

For this purpose, we define polynomials p,,(x) as follows: po(x) = k and py (z) = «.

Prsa() = @ps () = (k = Dpya(a) for m > 0 (2)

The polynomial p,,(x) for 1 < m < D equals the characteristic polynomial of the matrix formed by the entries
in the last m rows and columns of A(H); this fact can be seen by applying Laplace expansion of determinants.
Then pp(z) = Y\ 0,3 (7).

Furthermore, by using Laplace expansion on row 1 of A(H), we obtain that
Vp(x) = zpp(x) — kpp-1() (3)

Now we want to find an analytic expression for the polynomial p,,,(z). Here, the simplest way to go is to write
the following in Mathematica [13], although p,,(z) will not be given in a simplified way.
“FullSimplify[RSolve[p[m + 2] == x*p[m + 1] - (k - 1)*p[m], p[0] == k, p[l] == x, p[m], m]].”

However, we proceed by using ordinary power series [12], which will prove very beneficial in the end if we
consider the simplified expression we will obtain for p,,(x). Let P(z,t) = EmZO Do () E™

P(z,t) = k+at+ Z P2 ()t

m>0

= k+at+ Y (@pmir(@) — (k = Dpp(x))t™ " (Using Equation [
m>0

= k+at+at Z Prg1 ()™ — (k= 1)#? Z D ()™

m>0 m>0
= k+at+at(Px,t) — k) — (k- 1)t*P(a,t)
kE—(k—1)xt

1 —at+ (k—1)t2

Having some known power series at hand [6], we have that

Z Sil’l(m+ 1)0{ m 1

. s = where sin a # 0
sin a 1 —2cosas + s2

m>0

So substituting ¢ = vk — 1 and ¢ = £ into P(z,t), we obtain that P(z,s) = —£5325
g q T—Z2 45

As our aim is to compute multiplicities of eigenvalues of A(H), we can assume the variable x represents an

eigenvalue of A(H). We now suppose that some eigenvalue 6 of A(H) satisfy || < 2q. We will prove that the



multiplicity of such eigenvalues cannot be an integer. Note that, as G is bipartite, £k are eigenvalues that do
not satisfy the inequality. So, setting x = 2gcos «, for 0 < a < 7 (since sina # 0), it follows that

k 2¢2 cos as
1—2cosas+s2 1—2cosas+ s2

P(2qcosa, s) =

and thus,
pm(2gcosa)  ksin(m + 1)a — 22 cos ausin mo

- (4)

qm sin «

Using Equations and , we obtain that

Up(2gcosa) = (2gcosa)q? ksin(D + 1)« - 2¢? cos asin Do kgDl ksin Da — 2¢? .cos asin (D — 1)a
sin & sin «
D-1
= q' [2kq? cos asin(D + 1)a — (2g cos )®¢? sin Do — k* sin D + 2kq? cos avsin (D — 1)a]
sin «

Setting g(2qcos a) := 2kq? cos asin(D + 1)a — (2g cos a)?¢? sin Da — k% sin Do + 2kq? cos acsin (D — 1)a, we

have
¢P!
Uy(2gcosa) = 9(2q cos @)
sin «

Lemma 4.1 A(H) has D + 1 distinct eigenvalues:
i )
+k, 0;= 2qcos§ forie{1,2,...,D—1}

where ¢ = Vk — 1.

Proof. We first prove that 6 # +k is an any eigenvalue of A(H) iff sin Da = 0.

g(2qcosa) = 2kq*cosasin(D + 1)a — (2¢cos a)?q? sin Da — k% sin Da + 2kq? cos acsin (D — 1)a
= 2kq*cosasin(D + 1)a + (2¢cos a)? sin Do — k(2¢ cos a)? sin Da — k? sin Da +
+ 2kq® cosasin (D — 1)«

= 2kqcosa[q(sin(D 4+ 1) 4 sin (D — 1)a) — 2¢ cos asin Da] + ((2q cos a)? — k%) sin Da

= 2kqcosa[q(2cosasin Da) — 2qcos asin Dal + ((2qcos a)? — k%) sin Da

= ((2qcos)? — k?)sin Do
As |0] < 2g, it follows that (2gcosa)? — k% # 0, and sin Do = 0. Solving the equation sin Da = 0 for
0 < a<m, we get the following D — 1 distinct solutions a; = %r, where i € {1,...,D —1}. O
Thus,

D—-1

Uy (2gcosa) = Zin o

((2q cos )? — k%) sin Do (5)

Theorem 4.1 The multiplicity of 8 = 2qcos« as an eigenvalue of A(H) is

k(6% — 4¢?)

m(f) = —nm.



Proof. By Theorem [3.2, we have m(6;) = n2 ((99)), so we need to compute U7, (6).
H

a0 d
df do da

sin «

<qD1 (2qcosa)? — k?) sin Da>

k2
U ( (=D cos Do + cot asin De) + 4¢® cos o (D cos Daccot oo — (2 + cot? @) sin Da))
sin &

So U, (0) = gD ( k2 (=D cos Da + cot asin Dax) + 4¢? cos a (D cos Davcot v — (2 + cot? @) sin Da)). Us-

—2¢sina \ sina
ing the fact that sin Da = 0, we obtain that ¥/, () = —(HZDSPT;ZSDQ (—k? + 4¢* cos® @). As sin Da = 0,

pp(0) = qDW, and if we use sin (D + 1)a = sin Da.cos a + sin acos D, we finally get that pp(0) =

kqP cos Da.

m(6) = pp(0) . 2¢%k sin® o - k(4¢* cos® a — 44¢?) k(62 — 44?)
v (6) D(4¢? cos? o — k?) 2D(4¢? cos? a — k?)

~ "D — K2y

Before stating our main theorem, we present a very known fact on the rationality of the cosine function.

Theorem 4.2 ([10, Corollary 3.12]) If « is rational in degrees, say oo = 2mr for some rational number r,

then the only rational values of cosa are 0, £1/2 and 1.
Theorem 4.3 If there is a Moore bipartite graph of diameter D then D € {2,3,4,6}.

Proof. We proceed by showing that m(6) is not an integer unless D € {2,3,4,6}. By the expression of m(f)
we see that m(d) € N = 0 € Q & cos’a € Q. Let 0; be as in Lemma then ¢ = 2gcos ;5. Using
cos2p = 2 cos? 5 — 1, it follows that cos2f € Q, and by Theorem it follows that D € {2,3,4,6}, as

required. O
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