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Abstract

We partially classify Moore bipartite graphs. We prove that a Moore bipartite graph G exists only when

the diameter is 2, 3, 4 or 6. However, for the diameters 3, 4 and 6 a full classification is missing; only

graphs of degree k, where k−1 is a prime power, have been constructed [1, 4]. Similarly to the proofs of the

non-existence of Moore graphs for k ≥ 3 and D ≥ 3 given in [2, 6] and the non-existence proofs of Moore

bipartite graphs for k ≥ 3 and D = 5, D ≥ 7 presented in [2, 11], our proof relies on the integrality of the

multiplicity of an eigenvalue. We prove that, unless D = 2, 3, 4 or 6, the multiplicity of some eigenvalue

other than ±k of the adjacency matrix of G is not an integer. Almost nothing is new in our approach, but

we want to show the strength of equitable partitions and walk-regularity in tackling these sort of problems,

approach followed by Godsil in [6]. Our emphasis is on the clarity of the presentation, and we believe these

notes may have some methodological and pedagogical value.

1 Introduction

A general upper bound for the maximum number N b
∆,D of vertices in a bipartite graph of maximum degree

∆ and diameter D is given by the so-called Moore bipartite bound, denoted by M b
∆,D.

The fact that N b
∆,D is well-defined for any ∆ ≥ 2 and D ≥ 2 can be seen by considering the (∆, D)-broom

graph, a path of length D − 1 ≥ 1 with ∆− 1 ≥ 1 additional vertices connected to one of its ends.

To deduce the Moore bipartite bound, we can use the standard decomposition for a graph of even girth with

respect to an edge ab. Let ab be an edge of a bipartite graph G of maximum degree ∆ and diameter D. Define

the sets Ai and Bi for 0 ≤ i ≤ D − 1 as follows.

Ai = {c ∈ V (G)|d(a, c) = i, d(b, c) = i+ 1}

Bi = {c ∈ V (G)|d(b, c) = i, d(a, c) = i+ 1}

The decomposition of G into the sets Ai and Bi is called the standard decomposition for a graph of even girth

with respect to the edge ab [3].
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Since G is bipartite, its girth g(G) is even, and Ai ∩ Bi = ∅ for 0 ≤ i ≤ D − 1. Let the edge ab be in a

cycle of length g(G). Then, |A1|(|B1|) ≤ ∆ − 1 and |Ai|(|Bi|) ≤ (∆ − 1)|Ai−1|(|Bi−1|) for all i such that

2 ≤ i ≤ g(G)
2 − 1, and consequently, we have |Ai|(|Bi|) ≤ (∆− 1)i for 1 ≤ i ≤ g(G)

2 − 1.

Since g(G) ≤ 2D, it follows that

D−1∑
i=0

|Ai|+
D−1∑
i=0

|Bi| ≤ 2
(
1 + (∆− 1) + (∆− 1)2 + · · ·+ (∆− 1)D−1

)
=

 2 (∆−1)D−1
∆−2 if ∆ > 2

2D if ∆ = 2
(1)

The right-hand side of Equation (1) is the Moore bipartite bound. A bipartite graph of degree ∆, diameter D,

and order equal to M b
∆,D is called a Moore bipartite graph. It can be easily seen that such a graph is regular

of degree ∆ and girth 2D.

The Moore bipartite bound represents not only an upper bound on the number of vertices of a bipartite graph

of maximum degree ∆ and diameter D, but it is also a lower bound on the number ne∆,g of vertices of a regular

graph G of degree ∆ and girth g = 2D [2].

In the latter context if G has order M b
∆,D then G is the incidence graph of a generalized D-gon of order ∆−1.

Incidence graphs of generalized D-gons of order ∆− 1 and Moore bipartite graphs of maximum degree ∆ and

diameter D are different names for the same class of graphs.

As the graphs we will deal with are regular, we will use k rather than ∆ to denote their degrees.

For k = 2 and D ≥ 2 Moore bipartite graphs are the cycles on 2D vertices. When k ≥ 3 the rarity of Moore

bipartite graphs was settled by Feit and Higman [5] in 1964, and independently, by Singleton [11] in 1966.

They proved that such graphs exist only if the diameter is 2, 3, 4 or 6. Our proof of this assertion relies

on the use of equitable partitions [7, 9] and the fact that Moore bipartite graphs are walk-regular graphs, in

particular, distance-regular graphs.

For D = 2 and each k ≥ 3 the Moore bipartite graphs of degree k are the complete bipartite graphs of degree

k. For D = 3, 4, 6 Moore bipartite graphs of degree k have been constructed only when k− 1 is a prime power

[1].

The question of whether or not Moore bipartite graphs of diameter 3, 4 or 6 exist for other values of k remains

open, and represents one of the most famous problems in combinatorics.

2 Notation and Terminology

The vertex set V of a graph G is denoted by V (G), its edge set by E(G), and its diameter D(G).

The set of vertices at distance i from a vertex x in G is denoted by Ni(x). The distance between vertices u

and v is denoted by d(u, v).
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Given A,B ⊆ V (G), a path P = x0 . . . xl is called an A− B path if V (P ) ∩ A = {x0} and V (P ) ∩ B = {xl}.

We write a− b path instead of {a} − {b} path.

For a matrix M , MT denotes its transpose, and ΨM (x) its characteristic polynomial (if M is the adjacency

matrix A(G) of a graph G, we may use ΨG(x) instead). The identity matrix of order n is denoted by In.

The multiplicity of θ as an eigenvalue of A(G) is denoted by m(θ).

3 Equitable Partitions

This section is mainly based on [7, Chapter 5] and from [9, Chapter 9].

Let π = {C1, . . . , Cr} be a partition of the vertex set of a graph G. We call the subsets Ci cells. A partition

π = {C1, . . . , Cr} is equitable if, for any vertex u ∈ Ci, |N(u) ∩ Cj | = cij , viz., |N(u) ∩ Cj | is independent

of the selection of u. The quotient of G under π, denoted by G/π, is the digraph with the r cells of π as its

vertices and cij arcs from the vertex Ci to the vertex Cj .

For a partition π we define the characteristic matrix P (π) to be the |V (G)| × r matrix such that

(P )ij =

 1 if the vertex i belongs to the cell Cj

0 otherwise

For each u ∈ V (G) let Πu be the set of equitable partitions having Cu = {u} as their first cell, and Π1 the

set of equitable partitions having a singleton C1 as their first cell. From now on, let π denote an equitable

partition, and let P := P (π), H := G/π, Hu := G/πu if πu ∈ Πu, and n = |G|.

Note that PTP is diagonal, and nonsingular since (PTP )ii = |Cii|, where |Cii| ≥ 1.

Lemma 3.1 ([9, Lemma 9.3.1]) Let π be an equitable partition of the graph G, with characteristic matrix

P . Then A(G)P = PA(H).

Lemma 3.2 ([7, Lemma 5.2.2]) (a) If A(H)x = θx then A(G)Px = θPx.

(b) If A(G)y = θy then yTPA(H) = θyTP .

(c) ΨH(x) divides ΨG(x).

Lemma 3.3 ([7, Lemma 5.3.1]) The number of Ci − Cj walks of length l in G is equal to |Ci| times the

number of i− j walks of length l in H.

Corollary 3.1 ([7, Corollary 5.3.2])
(A(H)l)ij
(A(H)l)ji

=
|Cj |
|Ci|

.

Corollary 3.2 ([7, Corollary 5.3.3]) For u ∈ V (G), let πu ∈ Πu. Then

ΨG\{u}(x)

ΨG(x)
=

ΨHu\{Cu}(x)

ΨHu(x)
.
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Suppose that for each vertex u ∈ V (G) there is an equitable partition πu ∈ Πu. If xT = (x1, . . . , xn) is an

eigenvector of A(G) with respect to the eigenvalue θ then xTP will be a left eigenvector of A(Hu) with respect

to the eigenvalue θ iff xTP 6= 0. If xTP = 0 then xu = 0. As not all components of x can be zero, there exists

at least one v ∈ V (G) such that xTP 6= 0, and thus, θ is an eigenvalue of A(Hv).

Theorem 3.1 ([7, Theorem 5.3.4]) Suppose that for each vertex u ∈ V (G) there is an equitable partition

πu ∈ Πu. If θ is an eigenvalue of G, then

m(θ) = lim
x→θ

Ψ′G(x)(x− θ)
ΨG(x)

= lim
x→θ

∑
u∈V (G)

ΨHu\{Cu}(x)(x− θ)
ΨHu(x)

.

Corollary 3.3 ([8, Corollary 3.6]) For each eigenvalue θ of G, there is at least one u ∈ V (G) such that

for any πu ∈ Πu we have that θ is an eigenvalue of A(Hu).

3.1 Walk-regular Graphs

We say that a graph G is walk-regular if, for any vertices u, v ∈ V (G), ΨG/{u}(x) = ΨG/{v}(x).

Let Wuv(G, x) =
∑
m≥0(Am(G))uvx

m, that is, Wuv(G, x) denotes the walk generating function counting the

walks starting at the vertex u and finishing on the vertex v.

Lemma 3.4 ([7, It follows from Lemma 4.1.1]) Let u ∈ V (G). Then,

Wuu(G, x) = x−1 ΨG/{u}(x
−1)

ΨG(x−1)

From Lemma 3.4 it follows that x−1Wuu(G, x−1) =
ΨG/{u}(x)

ΨG(x) , so for a walk-regular graph G, Wuu(G, x−1) is

independent of the selection of u.

Therefore, G is walk-regular if, for any u ∈ V (G), the number of closed walks starting at u is independent of

u, that is, Am(G) has a constant diagonal for any m ∈ N.

Using Corollary 3.2, if G is a walk-regular graph, Theorem 3.1 can be simplified as follows.

Theorem 3.2 ([7, Corollary 5.3.4]) Let G be a walk-regular graph, π any partition in Π1, and θ an eigen-

value of G. Then
Ψ′G(x)

ΨG(x)
= n

ΨH\{C1}(x)

ΨH(x)

and therefore,

m(θ) = lim
x→θ

n
ΨH\{C1}(x)(x− θ)

ΨH(x)

or equivalently,

m(θ) = n
ΨH\{C1}(θ)

Ψ′H(θ)

(setting ΨH(x) = (x− θ)f(x), it follows that Ψ′H(x) = (x− θ)f ′(x) + f(x), and thus, Ψ′H(θ) = f(θ)).
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3.1.1 Distance-regular Graphs

An important class of walk-regular graphs is the class of distance-regular graphs. A graph is distance-regular

if, for any u, v ∈ V (G) and any i ∈ N, the number |N(u) ∩ Ni(v)| depends only on dG(u, v). We define the

distance partition of a graph G to be {N0(u), . . . , ND(G)(u)}. Alternatively, a graph G is distance-regular if

(a) for each u ∈ V (G), the distance partition is equitable, and

(b) the isomorphism from Hu to Hv maps u to v.

Let G be a distance regular, πu the distance partition with respect to u, ai = |N(u) ∩ Ni(v)|, bi = |N(u) ∩

Ni+1(v)|, and ci = |N(u) ∩Ni−1(v)|, when d(u, v) = i. Then

A(Hu) =



0 b0

c1 a1 b1 0

c2 a2 b2

c3 a3 b3
. . .

. . .
. . .

0 cD−1 aD−1 bD−1

cD aD


Note that for any two vertices u, v ∈ V (G), we have that A(Hu) = A(Hv) = A(H). Therefore, by Corollary

3.3 and Lemma 3.2(c), we obtain the following.

Proposition 3.1 The minimal polynomials of A(H) and A(G) coincide.

4 Moore Bipartite Graphs

From now on, let G denote a Moore bipartite graph of degree k and diameter D.

Proposition 4.1 ([2, Proposition 23.1(2)]) Let π = {C1, . . . , CD} be a distance partition of V (G). Then,

π is equitable and G is distance-regular with the following quotient matrix:

A(H) =



0 k

1 0 k − 1 0

1 0 k − 1

1 0 k − 1

. . .

. . .
. . .

0 1 0 k − 1

k 0
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Proof. It suffices to prove that G is distance regular. Let u, v ∈ V (G) such that d(u, v) = i for 1 ≤ i ≤ D.

Clearly, ai = 0 for 1 ≤ i ≤ D. For 1 ≤ i ≤ D − 1 ci = 1, otherwise in G there will a cycle of length at most

2D− 2. For i = D, as G is bipartite, cD = k. For 1 ≤ i ≤ D− 1, as G is bipartite of girth 2D, bi = k− 1 and

bD = 0. 2

By Proposition 3.1, any eigenvalue θ of A(H) is an eigenvalue of A(G). Our aim is now to prove that m(θ) is

not an integer for some θ. We first need to find a formula for m(θ).

For this purpose, we define polynomials pm(x) as follows: p0(x) = k and p1(x) = x.

pm+2(x) = xpm+1(x)− (k − 1)pm(x) for m ≥ 0 (2)

The polynomial pm(x) for 1 ≤ m ≤ D equals the characteristic polynomial of the matrix formed by the entries

in the last m rows and columns of A(H); this fact can be seen by applying Laplace expansion of determinants.

Then pD(x) = ΨH\{C1}(x).

Furthermore, by using Laplace expansion on row 1 of A(H), we obtain that

ΨH(x) = xpD(x)− kpD−1(x) (3)

Now we want to find an analytic expression for the polynomial pm(x). Here, the simplest way to go is to write

the following in Mathematica [13], although pm(x) will not be given in a simplified way.

“FullSimplify[RSolve[p[m + 2] == x*p[m + 1] - (k - 1)*p[m], p[0] == k, p[1] == x, p[m], m]].”

However, we proceed by using ordinary power series [12], which will prove very beneficial in the end if we

consider the simplified expression we will obtain for pm(x). Let P (x, t) =
∑
m≥0 pm(x)tm.

P (x, t) = k + xt+
∑
m≥0

pm+2(x)tm+2

= k + xt+
∑
m≥0

(xpm+1(x)− (k − 1)pm(x))tm+2 (Using Equation 2)

= k + xt+ xt
∑
m≥0

pm+1(x)tm+1 − (k − 1)t2
∑
m≥0

pm(x)tm

= k + xt+ xt(P (x, t)− k)− (k − 1)t2P (x, t)

=
k − (k − 1)xt

1− xt+ (k − 1)t2

Having some known power series at hand [6], we have that

∑
m≥0

sin(m+ 1)α

sinα
sm =

1

1− 2 cosαs+ s2
where sinα 6= 0

So substituting q =
√
k − 1 and t = s

q into P (x, t), we obtain that P (x, s) = k−qxs
1− xs

q +s2 .

As our aim is to compute multiplicities of eigenvalues of A(H), we can assume the variable x represents an

eigenvalue of A(H). We now suppose that some eigenvalue θ of A(H) satisfy |θ| < 2q. We will prove that the
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multiplicity of such eigenvalues cannot be an integer. Note that, as G is bipartite, ±k are eigenvalues that do

not satisfy the inequality. So, setting x = 2q cosα, for 0 < α < π (since sinα 6= 0), it follows that

P (2q cosα, s) =
k

1− 2 cosαs+ s2
− 2q2 cosαs

1− 2 cosαs+ s2

and thus,
pm(2q cosα)

qm
=
k sin(m+ 1)α− 2q2 cosα sinmα

sinα
(4)

Using Equations (3) and (4), we obtain that

ΨH(2q cosα) = (2q cosα)qD
k sin(D + 1)α− 2q2 cosα sinDα

sinα
− kqD−1 k sinDα− 2q2 cosα sin (D − 1)α

sinα

=
qD−1

sinα

[
2kq2 cosα sin(D + 1)α− (2q cosα)2q2 sinDα− k2 sinDα+ 2kq2 cosα sin (D − 1)α

]

Setting g(2q cosα) := 2kq2 cosα sin(D + 1)α − (2q cosα)2q2 sinDα − k2 sinDα + 2kq2 cosα sin (D − 1)α, we

have

ΨH(2q cosα) =
qD−1

sinα
g(2q cosα)

Lemma 4.1 A(H) has D + 1 distinct eigenvalues:

±k, θi = 2q cos
iπ

D
for i ∈ {1, 2, . . . , D − 1}

where q =
√
k − 1.

Proof. We first prove that θ 6= ±k is an any eigenvalue of A(H) iff sinDα = 0.

g(2q cosα) = 2kq2 cosα sin(D + 1)α− (2q cosα)2q2 sinDα− k2 sinDα+ 2kq2 cosα sin (D − 1)α

= 2kq2 cosα sin(D + 1)α+ (2q cosα)2 sinDα− k(2q cosα)2 sinDα− k2 sinDα+

+ 2kq2 cosα sin (D − 1)α

= 2kq cosα [q (sin(D + 1) + sin (D − 1)α)− 2q cosα sinDα] + ((2q cosα)2 − k2) sinDα

= 2kq cosα [q (2 cosα sinDα)− 2q cosα sinDα] + ((2q cosα)2 − k2) sinDα

= ((2q cosα)2 − k2) sinDα

As |θ| < 2q, it follows that (2q cosα)2 − k2 6= 0, and sinDα = 0. Solving the equation sinDα = 0 for

0 < α < π, we get the following D − 1 distinct solutions αi = iπ
D , where i ∈ {1, . . . , D − 1}. 2

Thus,

ΨH(2q cosα) =
qD−1

sinα
((2q cosα)2 − k2) sinDα (5)

Theorem 4.1 The multiplicity of θ = 2q cosα as an eigenvalue of A(H) is

m(θ) = −n k(θ2 − 4q2)

2D(θ2 − k2)
.
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Proof. By Theorem 3.2, we have m(θi) = n pD(θ)
Ψ′H(θ) , so we need to compute Ψ′H(θ).

dΨ′H(θ)

dθ

dθ

dα
=

d

dα

(
qD−1

sinα
((2q cosα)2 − k2) sinDα

)
= q−1+D

(
k2

sinα
(−D cosDα+ cotα sinDα) + 4q2 cosα

(
D cosDα cotα− (2 + cot2 α) sinDα

))
So Ψ′H(θ) = q−1+D

−2q sinα

(
k2

sinα (−D cosDα+ cotα sinDα) + 4q2 cosα
(
D cosDα cotα− (2 + cot2 α) sinDα

))
. Us-

ing the fact that sinDα = 0, we obtain that Ψ′H(θ) = − q
−2+DD cosDα

2 sin2 α

(
−k2 + 4q2 cos2 α

)
. As sinDα = 0,

pD(θ) = qD k sin (D+1)α
sinα , and if we use sin (D + 1)α = sinDα cosα + sinα cosDα, we finally get that pD(θ) =

kqD cosDα.

m(θ) =
pD(θ)

Ψ′H(θ)
= −n 2q2k sin2 α

D(4q2 cos2 α− k2)
= −n k(4q2 cos2 α− 4q2)

2D(4q2 cos2 α− k2)
= −n k(θ2 − 4q2)

2D(θ2 − k2)
.

2

Before stating our main theorem, we present a very known fact on the rationality of the cosine function.

Theorem 4.2 ([10, Corollary 3.12]) If α is rational in degrees, say α = 2πr for some rational number r,

then the only rational values of cosα are 0, ±1/2 and ±1.

Theorem 4.3 If there is a Moore bipartite graph of diameter D then D ∈ {2, 3, 4, 6}.

Proof. We proceed by showing that m(θ) is not an integer unless D ∈ {2, 3, 4, 6}. By the expression of m(θ)

we see that m(θ) ∈ N ⇒ θ ∈ Q ⇔ cos2 α ∈ Q. Let θ1 be as in Lemma 4.1, then θ1 = 2q cos π
D . Using

cos 2 πD = 2 cos2 π
D − 1, it follows that cos 2 πD ∈ Q, and by Theorem 4.2, it follows that D ∈ {2, 3, 4, 6}, as

required. 2
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