Partial classification of Moore bipartite graphs

Guillermo Pineda-Villavicencio*

Centre for Informatics and Applied Optimization University of Ballarat

Abstract

We partially classify Moore bipartite graphs. We prove that a Moore bipartite graph G exists only when the diameter is 2, 3, 4 or 6. However, for the diameters 3, 4 and 6 a full classification is missing; only graphs of degree k, where k-1 is a prime power, have been constructed [1, 4]. Similarly to the proofs of the non-existence of Moore graphs for $k \ge 3$ and $D \ge 3$ given in [2, 6] and the non-existence proofs of Moore bipartite graphs for $k \ge 3$ and D = 5, $D \ge 7$ presented in [2, 11], our proof relies on the integrality of the multiplicity of an eigenvalue. We prove that, unless D = 2, 3, 4 or 6, the multiplicity of some eigenvalue other than $\pm k$ of the adjacency matrix of G is not an integer. Almost nothing is new in our approach, but we want to show the strength of equitable partitions and walk-regularity in tackling these sort of problems, approach followed by Godsil in [6]. Our emphasis is on the clarity of the presentation, and we believe these notes may have some methodological and pedagogical value.

1 Introduction

A general upper bound for the maximum number $N^b_{\Delta,D}$ of vertices in a bipartite graph of maximum degree Δ and diameter D is given by the so-called Moore bipartite bound, denoted by $M^b_{\Delta,D}$.

The fact that $N^b_{\Delta,D}$ is well-defined for any $\Delta \ge 2$ and $D \ge 2$ can be seen by considering the (Δ, D) -broom graph, a path of length $D - 1 \ge 1$ with $\Delta - 1 \ge 1$ additional vertices connected to one of its ends.

To deduce the Moore bipartite bound, we can use the standard decomposition for a graph of even girth with respect to an edge ab. Let ab be an edge of a bipartite graph G of maximum degree Δ and diameter D. Define the sets A_i and B_i for $0 \le i \le D - 1$ as follows.

$$\begin{array}{lll} A_i &=& \{c \in V(G) | d(a,c) = i, d(b,c) = i+1 \} \\ B_i &=& \{c \in V(G) | d(b,c) = i, d(a,c) = i+1 \} \end{array}$$

The decomposition of G into the sets A_i and B_i is called the standard decomposition for a graph of even girth with respect to the edge ab [3].

 $^{^*} work @guillermo.com.au$

Since G is bipartite, its girth g(G) is even, and $A_i \cap B_i = \emptyset$ for $0 \le i \le D - 1$. Let the edge ab be in a cycle of length g(G). Then, $|A_1|(|B_1|) \le \Delta - 1$ and $|A_i|(|B_i|) \le (\Delta - 1)|A_{i-1}|(|B_{i-1}|)$ for all i such that $2 \le i \le \frac{g(G)}{2} - 1$, and consequently, we have $|A_i|(|B_i|) \le (\Delta - 1)^i$ for $1 \le i \le \frac{g(G)}{2} - 1$.

Since $g(G) \leq 2D$, it follows that

$$\sum_{i=0}^{D-1} |A_i| + \sum_{i=0}^{D-1} |B_i| \leq 2 \left(1 + (\Delta - 1) + (\Delta - 1)^2 + \dots + (\Delta - 1)^{D-1} \right)$$
$$= \begin{cases} 2 \frac{(\Delta - 1)^D - 1}{\Delta - 2} & \text{if } \Delta > 2\\ 2D & \text{if } \Delta = 2 \end{cases}$$
(1)

The right-hand side of Equation (1) is the *Moore bipartite bound*. A bipartite graph of degree Δ , diameter D, and order equal to $M^b_{\Delta,D}$ is called a *Moore bipartite graph*. It can be easily seen that such a graph is regular of degree Δ and girth 2D.

The Moore bipartite bound represents not only an upper bound on the number of vertices of a bipartite graph of maximum degree Δ and diameter D, but it is also a lower bound on the number $n^e_{\Delta,g}$ of vertices of a regular graph G of degree Δ and girth g = 2D [2].

In the latter context if G has order $M^b_{\Delta,D}$ then G is the incidence graph of a generalized D-gon of order $\Delta - 1$. Incidence graphs of generalized D-gons of order $\Delta - 1$ and Moore bipartite graphs of maximum degree Δ and diameter D are different names for the same class of graphs.

As the graphs we will deal with are regular, we will use k rather than Δ to denote their degrees.

For k = 2 and $D \ge 2$ Moore bipartite graphs are the cycles on 2D vertices. When $k \ge 3$ the rarity of Moore bipartite graphs was settled by Feit and Higman [5] in 1964, and independently, by Singleton [11] in 1966. They proved that such graphs exist only if the diameter is 2, 3, 4 or 6. Our proof of this assertion relies on the use of equitable partitions [7, 9] and the fact that Moore bipartite graphs are walk-regular graphs, in particular, distance-regular graphs.

For D = 2 and each $k \ge 3$ the Moore bipartite graphs of degree k are the complete bipartite graphs of degree k. For D = 3, 4, 6 Moore bipartite graphs of degree k have been constructed only when k - 1 is a prime power [1].

The question of whether or not Moore bipartite graphs of diameter 3, 4 or 6 exist for other values of k remains open, and represents one of the most famous problems in combinatorics.

2 Notation and Terminology

The vertex set V of a graph G is denoted by V(G), its edge set by E(G), and its diameter D(G).

The set of vertices at distance *i* from a vertex *x* in *G* is denoted by $N_i(x)$. The distance between vertices *u* and *v* is denoted by d(u, v).

Given $A, B \subseteq V(G)$, a path $P = x_0 \dots x_l$ is called an A - B path if $V(P) \cap A = \{x_0\}$ and $V(P) \cap B = \{x_l\}$. We write a - b path instead of $\{a\} - \{b\}$ path.

For a matrix M, M^T denotes its transpose, and $\Psi_M(x)$ its characteristic polynomial (if M is the adjacency matrix A(G) of a graph G, we may use $\Psi_G(x)$ instead). The identity matrix of order n is denoted by I_n . The multiplicity of θ as an eigenvalue of A(G) is denoted by $m(\theta)$.

3 Equitable Partitions

This section is mainly based on [7, Chapter 5] and from [9, Chapter 9].

Let $\pi = \{C_1, \ldots, C_r\}$ be a partition of the vertex set of a graph G. We call the subsets C_i cells. A partition $\pi = \{C_1, \ldots, C_r\}$ is equitable if, for any vertex $u \in C_i$, $|N(u) \cap C_j| = c_{ij}$, viz., $|N(u) \cap C_j|$ is independent of the selection of u. The quotient of G under π , denoted by G/π , is the digraph with the r cells of π as its vertices and c_{ij} arcs from the vertex C_i to the vertex C_j .

For a partition π we define the *characteristic matrix* $P(\pi)$ to be the $|V(G)| \times r$ matrix such that

$$(P)_{ij} = \begin{cases} 1 & \text{if the vertex } i \text{ belongs to the cell } C_j \\ 0 & \text{otherwise} \end{cases}$$

For each $u \in V(G)$ let Π_u be the set of equitable partitions having $C_u = \{u\}$ as their first cell, and Π_1 the set of equitable partitions having a singleton C_1 as their first cell. From now on, let π denote an equitable partition, and let $P := P(\pi)$, $H := G/\pi$, $H_u := G/\pi_u$ if $\pi_u \in \Pi_u$, and n = |G|.

Note that $P^T P$ is diagonal, and nonsingular since $(P^T P)_{ii} = |C_{ii}|$, where $|C_{ii}| \ge 1$.

Lemma 3.1 ([9, Lemma 9.3.1]) Let π be an equitable partition of the graph G, with characteristic matrix P. Then A(G)P = PA(H).

Lemma 3.2 ([7, Lemma 5.2.2]) (a) If $A(H)x = \theta x$ then $A(G)Px = \theta Px$.

- (b) If $A(G)y = \theta y$ then $y^T P A(H) = \theta y^T P$.
- (c) $\Psi_H(x)$ divides $\Psi_G(x)$.

Lemma 3.3 ([7, Lemma 5.3.1]) The number of $C_i - C_j$ walks of length l in G is equal to $|C_i|$ times the number of i - j walks of length l in H.

Corollary 3.1 ([7, Corollary 5.3.2])

$$\frac{(A(H)^l)_{ij}}{(A(H)^l)_{ji}} = \frac{|C_j|}{|C_i|}.$$

Corollary 3.2 ([7, Corollary 5.3.3]) For $u \in V(G)$, let $\pi_u \in \Pi_u$. Then

$$\frac{\Psi_{G\setminus\{u\}}(x)}{\Psi_G(x)} = \frac{\Psi_{H_u\setminus\{C_u\}}(x)}{\Psi_{H_u}(x)}.$$

Suppose that for each vertex $u \in V(G)$ there is an equitable partition $\pi_u \in \Pi_u$. If $x^T = (x_1, \ldots, x_n)$ is an eigenvector of A(G) with respect to the eigenvalue θ then $x^T P$ will be a left eigenvector of $A(H_u)$ with respect to the eigenvalue θ iff $x^T P \neq 0$. If $x^T P = 0$ then $x_u = 0$. As not all components of x can be zero, there exists at least one $v \in V(G)$ such that $x^T P \neq 0$, and thus, θ is an eigenvalue of $A(H_v)$.

Theorem 3.1 ([7, Theorem 5.3.4]) Suppose that for each vertex $u \in V(G)$ there is an equitable partition $\pi_u \in \Pi_u$. If θ is an eigenvalue of G, then

$$\mathbf{m}(\theta) = \lim_{x \to \theta} \frac{\Psi_G'(x)(x-\theta)}{\Psi_G(x)} = \lim_{x \to \theta} \sum_{u \in V(G)} \frac{\Psi_{H_u \setminus \{C_u\}}(x)(x-\theta)}{\Psi_{H_u}(x)}.$$

Corollary 3.3 ([8, Corollary 3.6]) For each eigenvalue θ of G, there is at least one $u \in V(G)$ such that for any $\pi_u \in \Pi_u$ we have that θ is an eigenvalue of $A(H_u)$.

3.1 Walk-regular Graphs

We say that a graph G is walk-regular if, for any vertices $u, v \in V(G), \Psi_{G/\{u\}}(x) = \Psi_{G/\{v\}}(x)$.

Let $W_{uv}(G, x) = \sum_{m \ge 0} (A^m(G))_{uv} x^m$, that is, $W_{uv}(G, x)$ denotes the walk generating function counting the walks starting at the vertex u and finishing on the vertex v.

Lemma 3.4 ([7, It follows from Lemma 4.1.1]) Let $u \in V(G)$. Then,

$$W_{uu}(G, x) = x^{-1} \frac{\Psi_{G/\{u\}}(x^{-1})}{\Psi_G(x^{-1})}$$

From Lemma 3.4 it follows that $x^{-1}W_{uu}(G, x^{-1}) = \frac{\Psi_{G/\{u\}}(x)}{\Psi_G(x)}$, so for a walk-regular graph $G, W_{uu}(G, x^{-1})$ is independent of the selection of u.

Therefore, G is walk-regular if, for any $u \in V(G)$, the number of closed walks starting at u is independent of u, that is, $A^m(G)$ has a constant diagonal for any $m \in \mathbb{N}$.

Using Corollary 3.2, if G is a walk-regular graph, Theorem 3.1 can be simplified as follows.

Theorem 3.2 ([7, Corollary 5.3.4]) Let G be a walk-regular graph, π any partition in Π_1 , and θ an eigenvalue of G. Then

$$\frac{\Psi_G'(x)}{\Psi_G(x)} = n \frac{\Psi_{H \setminus \{C_1\}}(x)}{\Psi_H(x)}$$

and therefore,

$$\mathbf{m}(\theta) = \lim_{x \to \theta} n \frac{\Psi_{H \setminus \{C_1\}}(x)(x-\theta)}{\Psi_H(x)}$$

or equivalently,

$$\mathbf{m}(\theta) = n \frac{\Psi_{H \setminus \{C_1\}}(\theta)}{\Psi'_H(\theta)}$$

(setting $\Psi_H(x) = (x - \theta)f(x)$, it follows that $\Psi'_H(x) = (x - \theta)f'(x) + f(x)$, and thus, $\Psi'_H(\theta) = f(\theta)$).

3.1.1 Distance-regular Graphs

An important class of walk-regular graphs is the class of distance-regular graphs. A graph is distance-regular if, for any $u, v \in V(G)$ and any $i \in \mathbb{N}$, the number $|N(u) \cap N_i(v)|$ depends only on $d_G(u, v)$. We define the distance partition of a graph G to be $\{N_0(u), \ldots, N_{D(G)}(u)\}$. Alternatively, a graph G is distance-regular if

- (a) for each $u \in V(G)$, the distance partition is equitable, and
- (b) the isomorphism from H_u to H_v maps u to v.

Let G be a distance regular, π_u the distance partition with respect to u, $a_i = |N(u) \cap N_i(v)|$, $b_i = |N(u) \cap N_{i+1}(v)|$, and $c_i = |N(u) \cap N_{i-1}(v)|$, when d(u, v) = i. Then

Note that for any two vertices $u, v \in V(G)$, we have that $A(H_u) = A(H_v) = A(H)$. Therefore, by Corollary 3.3 and Lemma 3.2(c), we obtain the following.

Proposition 3.1 The minimal polynomials of A(H) and A(G) coincide.

4 Moore Bipartite Graphs

From now on, let G denote a Moore bipartite graph of degree k and diameter D.

Proposition 4.1 ([2, Proposition 23.1(2)]) Let $\pi = \{C_1, \ldots, C_D\}$ be a distance partition of V(G). Then, π is equitable and G is distance-regular with the following quotient matrix:

Proof. It suffices to prove that G is distance regular. Let $u, v \in V(G)$ such that d(u, v) = i for $1 \le i \le D$. Clearly, $a_i = 0$ for $1 \le i \le D$. For $1 \le i \le D - 1$ $c_i = 1$, otherwise in G there will a cycle of length at most 2D - 2. For i = D, as G is bipartite, $c_D = k$. For $1 \le i \le D - 1$, as G is bipartite of girth 2D, $b_i = k - 1$ and $b_D = 0$.

By Proposition 3.1, any eigenvalue θ of A(H) is an eigenvalue of A(G). Our aim is now to prove that $m(\theta)$ is not an integer for some θ . We first need to find a formula for $m(\theta)$.

For this purpose, we define polynomials $p_m(x)$ as follows: $p_0(x) = k$ and $p_1(x) = x$.

$$p_{m+2}(x) = xp_{m+1}(x) - (k-1)p_m(x) \text{ for } m \ge 0$$
(2)

The polynomial $p_m(x)$ for $1 \le m \le D$ equals the characteristic polynomial of the matrix formed by the entries in the last *m* rows and columns of A(H); this fact can be seen by applying Laplace expansion of determinants. Then $p_D(x) = \Psi_{H \setminus \{C_1\}}(x)$.

Furthermore, by using Laplace expansion on row 1 of A(H), we obtain that

$$\Psi_H(x) = x p_D(x) - k p_{D-1}(x)$$
(3)

Now we want to find an analytic expression for the polynomial $p_m(x)$. Here, the simplest way to go is to write the following in *Mathematica* [13], although $p_m(x)$ will not be given in a simplified way.

"FullSimplify[RSolve[p[m + 2] == x*p[m + 1] - (k - 1)*p[m], p[0] == k, p[1] == x, p[m], m]]."

However, we proceed by using ordinary power series [12], which will prove very beneficial in the end if we consider the simplified expression we will obtain for $p_m(x)$. Let $P(x,t) = \sum_{m>0} p_m(x)t^m$.

$$\begin{split} P(x,t) &= k + xt + \sum_{m \ge 0} p_{m+2}(x)t^{m+2} \\ &= k + xt + \sum_{m \ge 0} (xp_{m+1}(x) - (k-1)p_m(x))t^{m+2} \text{ (Using Equation 2)} \\ &= k + xt + xt \sum_{m \ge 0} p_{m+1}(x)t^{m+1} - (k-1)t^2 \sum_{m \ge 0} p_m(x)t^m \\ &= k + xt + xt(P(x,t) - k) - (k-1)t^2P(x,t) \\ &= \frac{k - (k-1)xt}{1 - xt + (k-1)t^2} \end{split}$$

Having some known power series at hand [6], we have that

$$\sum_{m \ge 0} \frac{\sin(m+1)\alpha}{\sin\alpha} s^m = \frac{1}{1 - 2\cos\alpha s + s^2} \quad \text{where } \sin\alpha \neq 0$$

So substituting $q = \sqrt{k-1}$ and $t = \frac{s}{q}$ into P(x,t), we obtain that $P(x,s) = \frac{k-qxs}{1-\frac{xs}{q}+s^2}$.

As our aim is to compute multiplicities of eigenvalues of A(H), we can assume the variable x represents an eigenvalue of A(H). We now suppose that some eigenvalue θ of A(H) satisfy $|\theta| < 2q$. We will prove that the

multiplicity of such eigenvalues cannot be an integer. Note that, as G is bipartite, $\pm k$ are eigenvalues that do not satisfy the inequality. So, setting $x = 2q \cos \alpha$, for $0 < \alpha < \pi$ (since $\sin \alpha \neq 0$), it follows that

$$P(2q\cos\alpha, s) = \frac{k}{1 - 2\cos\alpha s + s^2} - \frac{2q^2\cos\alpha s}{1 - 2\cos\alpha s + s^2}$$

and thus,

$$\frac{p_m(2q\cos\alpha)}{q^m} = \frac{k\sin(m+1)\alpha - 2q^2\cos\alpha\sin m\alpha}{\sin\alpha} \tag{4}$$

Using Equations (3) and (4), we obtain that

$$\Psi_H(2q\cos\alpha) = (2q\cos\alpha)q^D \frac{k\sin(D+1)\alpha - 2q^2\cos\alpha\sin D\alpha}{\sin\alpha} - kq^{D-1}\frac{k\sin D\alpha - 2q^2\cos\alpha\sin(D-1)\alpha}{\sin\alpha}$$
$$= \frac{q^{D-1}}{\sin\alpha} \left[2kq^2\cos\alpha\sin(D+1)\alpha - (2q\cos\alpha)^2q^2\sin D\alpha - k^2\sin D\alpha + 2kq^2\cos\alpha\sin(D-1)\alpha\right]$$

Setting $g(2q\cos\alpha) := 2kq^2\cos\alpha\sin(D+1)\alpha - (2q\cos\alpha)^2q^2\sin D\alpha - k^2\sin D\alpha + 2kq^2\cos\alpha\sin(D-1)\alpha$, we have

$$\Psi_H(2q\cos\alpha) = \frac{q^{D-1}}{\sin\alpha}g(2q\cos\alpha)$$

Lemma 4.1 A(H) has D + 1 distinct eigenvalues:

$$\pm k, \quad \theta_i = 2q \cos \frac{i\pi}{D} \text{ for } i \in \{1, 2, \dots, D-1\}$$

where $q = \sqrt{k-1}$.

Proof. We first prove that $\theta \neq \pm k$ is an any eigenvalue of A(H) iff $\sin D\alpha = 0$.

$$g(2q\cos\alpha) = 2kq^{2}\cos\alpha\sin(D+1)\alpha - (2q\cos\alpha)^{2}q^{2}\sin D\alpha - k^{2}\sin D\alpha + 2kq^{2}\cos\alpha\sin(D-1)\alpha$$

$$= 2kq^{2}\cos\alpha\sin(D+1)\alpha + (2q\cos\alpha)^{2}\sin D\alpha - k(2q\cos\alpha)^{2}\sin D\alpha - k^{2}\sin D\alpha + 2kq^{2}\cos\alpha\sin(D-1)\alpha$$

$$= 2kq\cos\alpha\left[q(\sin(D+1) + \sin(D-1)\alpha) - 2q\cos\alpha\sin D\alpha\right] + ((2q\cos\alpha)^{2} - k^{2})\sin D\alpha$$

$$= 2kq\cos\alpha\left[q(2\cos\alpha\sin D\alpha) - 2q\cos\alpha\sin D\alpha\right] + ((2q\cos\alpha)^{2} - k^{2})\sin D\alpha$$

$$= ((2q\cos\alpha)^{2} - k^{2})\sin D\alpha$$

As $|\theta| < 2q$, it follows that $(2q\cos\alpha)^2 - k^2 \neq 0$, and $\sin D\alpha = 0$. Solving the equation $\sin D\alpha = 0$ for $0 < \alpha < \pi$, we get the following D - 1 distinct solutions $\alpha_i = \frac{i\pi}{D}$, where $i \in \{1, \dots, D - 1\}$. Thus,

$$\Psi_H(2q\cos\alpha) = \frac{q^{D-1}}{\sin\alpha} ((2q\cos\alpha)^2 - k^2)\sin D\alpha$$
(5)

Theorem 4.1 The multiplicity of $\theta = 2q \cos \alpha$ as an eigenvalue of A(H) is

$$m(\theta) = -n \frac{k(\theta^2 - 4q^2)}{2D(\theta^2 - k^2)}.$$

Proof. By Theorem 3.2, we have $m(\theta_i) = n \frac{p_D(\theta)}{\Psi'_H(\theta)}$, so we need to compute $\Psi'_H(\theta)$.

$$\frac{\mathrm{d}\Psi'_{H}(\theta)}{\mathrm{d}\theta}\frac{\mathrm{d}\theta}{\mathrm{d}\alpha} = \frac{\mathrm{d}}{\mathrm{d}\alpha} \left(\frac{q^{D-1}}{\sin\alpha} ((2q\cos\alpha)^{2} - k^{2})\sin D\alpha\right)$$
$$= q^{-1+D} \left(\frac{k^{2}}{\sin\alpha} \left(-D\cos D\alpha + \cot\alpha\sin D\alpha\right) + 4q^{2}\cos\alpha\left(D\cos D\alpha\cot\alpha - (2+\cot^{2}\alpha)\sin D\alpha\right)\right)$$

So $\Psi'_{H}(\theta) = \frac{q^{-1+D}}{-2q\sin\alpha} \left(\frac{k^{2}}{\sin\alpha} \left(-D\cos D\alpha + \cot\alpha \sin D\alpha \right) + 4q^{2}\cos\alpha \left(D\cos D\alpha \cot\alpha - (2 + \cot^{2}\alpha) \sin D\alpha \right) \right)$. Using the fact that $\sin D\alpha = 0$, we obtain that $\Psi'_{H}(\theta) = -\frac{q^{-2+D}D\cos D\alpha}{2\sin^{2}\alpha} \left(-k^{2} + 4q^{2}\cos^{2}\alpha \right)$. As $\sin D\alpha = 0$, $p_{D}(\theta) = q^{D}\frac{k\sin(D+1)\alpha}{\sin\alpha}$, and if we use $\sin(D+1)\alpha = \sin D\alpha \cos\alpha + \sin\alpha \cos D\alpha$, we finally get that $p_{D}(\theta) = kq^{D}\cos D\alpha$.

$$\mathbf{m}(\theta) = \frac{p_D(\theta)}{\Psi'_H(\theta)} = -n \frac{2q^2 k \sin^2 \alpha}{D(4q^2 \cos^2 \alpha - k^2)} = -n \frac{k(4q^2 \cos^2 \alpha - 4q^2)}{2D(4q^2 \cos^2 \alpha - k^2)} = -n \frac{k(\theta^2 - 4q^2)}{2D(\theta^2 - k^2)}.$$

Before stating our main theorem, we present a very known fact on the rationality of the cosine function.

Theorem 4.2 ([10, Corollary 3.12]) If α is rational in degrees, say $\alpha = 2\pi r$ for some rational number r, then the only rational values of $\cos \alpha$ are $0, \pm 1/2$ and ± 1 .

Theorem 4.3 If there is a Moore bipartite graph of diameter D then $D \in \{2, 3, 4, 6\}$.

Proof. We proceed by showing that $m(\theta)$ is not an integer unless $D \in \{2, 3, 4, 6\}$. By the expression of $m(\theta)$ we see that $m(\theta) \in \mathbb{N} \Rightarrow \theta \in \mathbb{Q} \Leftrightarrow \cos^2 \alpha \in \mathbb{Q}$. Let θ_1 be as in Lemma 4.1, then $\theta_1 = 2q \cos \frac{\pi}{D}$. Using $\cos 2\frac{\pi}{D} = 2\cos^2 \frac{\pi}{D} - 1$, it follows that $\cos 2\frac{\pi}{D} \in \mathbb{Q}$, and by Theorem 4.2, it follows that $D \in \{2, 3, 4, 6\}$, as required.

References

- C. T. Benson. Minimal regular graphs of girth eight and twelve. Canadian Journal of Mathematics, 18:1091–1094, 1966.
- [2] N. L. Biggs. Algebraic Graph Theory. Cambridge University Press, Cambridge, 2nd. edition, 1993.
- [3] N. L. Biggs and T. Ito. Graphs with even girth and small excess. Mathematical Proceedings of the Cambridge Philosophical Society, 88(1):1–10, 1980.
- [4] F. Buekenhout, editor. Handbook of Incidence Geometry: Buildings and Foundations. North-Holland, Amsterdam, 1995.
- [5] W. Feit and G. Higman. The nonexistence of certain generalized polygons. Journal of Algebra, 1:114–131, 1964. doi:10.1016/0021-8693(64)90028-6.
- [6] C. D. Godsil. So few Moore graphs. http://quoll.uwaterloo.ca/pstuff/moore.pdf. Accessed on 30 Sep 2009.

- [7] C. D. Godsil. Algebraic Combinatorics. Chapman&Hall/CRC, New York, 1993.
- [8] C. D. Godsil and B. D. McKay. Feasibility conditions for the existence of walk-regular graphs. *Linear algebra and its applications*, 30:51–61, 1980.
- [9] C. D. Godsil and G. F. Royle. Algebraic Graph Theory, volume 207 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
- [10] I. M. Niven. Irrational Numbers. Wiley, New York, 1956.
- [11] R. C. Singleton. On minimal graphs of maximum even girth. Journal of Combinatorial Theory, 1(3):306– 332, 1966. doi:10.1016/S0021-9800(66)80054-6.
- [12] H. S. Wilf. Generatingfunctionology. A K Peters Ltd., Wellesley, MA, 3rd edition, 2006.
- [13] S. Wolfram. The Mathematica Book. Wolfram Media, Inc., New York, 5th. edition, 2003.