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Abstract

We classify the graphs of maximum degree ∆, diameter 2, and cyclic defect. The exposition

is mainly based on Fajtlowicz’s original proof [5].

1 Introduction

It is known that the Moore bound, denoted by M∆,D and defined below, represents an upper

bound on the order of a graph of maximum degree ∆ and diameter D [2].

M∆,D =

 1 + ∆ (∆−1)D−1
∆−2 if ∆ > 2

2D + 1 if ∆ = 2
(1)

Moore graphs (graphs whose order equals the Moore bound) exist only for D = 2, in which

case ∆ = 2, 3, 7 and possibly 57 [6, 1]. It was asked in [4]: Given non-negative numbers ∆ and

δ (defect), is there a graph of maximum degree ∆, diameter 2 and order M∆,2 − δ, that is, a

(∆, 2,−δ)-graph? The case δ = 1 was solved by Erdös et al. [4]; with the exception of C4, there

is no (∆, 2,−1)-graph. Here we consider the defect 2.

It is not difficult to see that if δ < ∆ then a (∆, 2,−δ)-graph must be regular. Let Γ be a simple

graph of maximum degree ∆, diameter 2 and order n = M∆,2− 2. Then, for ∆ ≥ 3 Γ is regular.

For ∆ ≤ 2 the path on 3 vertices is the only such graph. In the following, assume ∆ ≥ 3. The

∗work@guillermo.com.au

1



girth of Γ is 4. Every vertex of Γ is contained in either Θ2 (the union of three independent

paths of length 2 with common endvertices) or in exactly two 4-cycles. If there are at least 2

paths of length at most 2 from a vertex v to a vertex u, then we say that v is a repeat of u

(or viceversa), and we may denote v by rep(u). Then, in this case, we have two repeats (not

necessarily different) for each vertex of Γ. Next we define the repeat (multi)graph RΓ of Γ. RΓ is

the graph with V (RΓ) = V (Γ), with two vertices being adjacent iff one is a repeat of the other.

Then RΓ is a union of vertex-disjoint cycles of length at least 2.

Let A be the adjacency matrix of Γ, and let B be the adjacency matrix of RΓ, called the defect

matrix, in which the main diagonals consist entirely of 0’s, and the row and column sums are

equal to 2. With a suitable labeling of Γ, B becomes a direct sum of symmetric ath-order

circulants of the form,

Da =



0 1 0 . . . 0 1

1 0 1 . . . 0 0

0 1 0 . . . 0 0

. . . . . . . . . . . . . .

1 0 0 . . . 1 0


a ≥ 2

This matrix was first studied in [3], in the context of regular graphs of girth 5.

Then the following equation holds.

A2 +A− (∆− 1)In = Jn +B (2)

where Jn is the square matrix of order n whose entries are all 1, and In is the identity matrix

of order n.

Henceforth we consider the case of B = Cn. It is well known that the eigenvalues and their

corresponding multiplicities of a matrix representing a n-cycle are2 2 cos 2π
n × 1 2 cos 2π

n × 2 . . . 2 cos 2π
n × (n2 − 1) −2

1 2 2 . . . 2 1

 (n even)

2 2 cos 2π
n × 1 2 cos 2π

n × 2 . . . 2 cos 2π
n × (n−1

2 )

1 2 2 . . . 2

 (n odd)
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The first row displays the eigenvalues, and the second row their corresponding multiplicities.

It is also known that the spectrum of Jn is

 n 0

1 n− 1

.

2 The Möbious ladder on 8 vertices as the only solution for Γ

In this section we prove the following.

Theorem 2.1 ([5]) If B = Cn, then ∆ = 3 and Γ is the Möbious ladder on 8 vertices.

Proof. If a vertex of Γ is contained in a Θ2, then in B we would have a 2-cycle. Therefore,

every vertex of Γ is contained in exactly two 4-cycles. Since the number 2n
4 of 4-cycles in Γ must

be integer, n ≡ 0 (mod 2), and in fact, n ≡ 0 (mod 4).

As A, B and Jn are symmetric matrices, they are diagonalizable. Since Jn commutes with A

and B, B commutes with A, and hence, all the three matrices are simultaneously diagonalizable,

that is, there is an orthogonal matrix P for which P−1AP , P−1BP and P−1JnP are diagonal,

and the columns of P are corresponding eigenvectors for each of these matrices.

We have that the eigenvalue n of Jn is paired with the eigenvalue 2 of B, and ∆ of A (all

associated to the all 1’s vector).

As −2 is a simple eigenvalue of Cn, there is a simple eigenvalue γ of A satisfying

γ2 + γ − (∆− 1) = −2. (3)

Since in Cn the eigenspace of −2 contains the vector u = (1,−1, 1,−1, . . .)T , in A an eigenvector

associated with γ has the form αu for α ∈ R, and consequently, u is also an eigenvector of A,

implying that γ must be integer.

As 4|n, 0 is an eigenvalue of Cn with multiplicity 2. Therefore

x2 + x− (∆− 1) = 0. (4)

Denote by θ1 and θ2 the roots of Equation (4). Suppose θ1 and θ2 are rational. The discriminant

of Equation (4) is 4∆− 3, and like the one of (3) 4∆− 11, must be a perfect square. The only
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pair of perfect squares differing by 8 is {1,9}, implying ∆ = 3, in which case, Γ is the Möbious

ladder on 8 vertices.

It follows that θ1 and θ2 are simple and irrational eigenvalues of Γ (they are algebraic conjugates).

We complete the proof of Theorem 2.1 by showing that θ1 and θ2 cannot be irrational.

In Cn the eigenspace associated with 0 has dimension 2, and the vectors u = (0,−1, 0, 1, . . .)T

and v = (−1, 0, 1, 0, . . .)T form a basis of it. Therefore, in A the vectors in the one-dimensional

eigenspaces of θ1 and θ2 have the form αu + βv. Therefore, we can say that the vectors t1 =

(1, q,−1,−q, . . .)T and t2 = (1, p,−1,−p, . . .)T are associated with θ1 and θ2, respectively. Since

eigenvectors with respect to different eigenvalues are orthogonal, we have

pq = −1 (5)

Since At1 = θ1t1 and At2 = θ2t2, by considering the first two rows of A, we find a, b, c, d ∈ Z

such that

a+ bq = θ1 (6)

c+ dq = θ1q (7)

a+ bp = θ2 (8)

c+ dp = θ2p (9)

Solving the System of Equations (5), (6), (7), (8) and (9), we have

b = c (10)

a+ d = θ1 + θ2 = −1 (11)

In the labeling associated to Γ, denote by zi the vertex corresponding to the i row of A, and

by w
(i)
1 , w

(i)
2 , w

(i)
3 and w

(i)
4 , the numbers of neighbors of zi such that in At1 the corresponding

components of t1 are 1, −1, q and −q, respectively. Then, w
(i)
1 + w

(i)
2 + w

(i)
3 + w

(i)
4 = ∆.

Consider z1, then θ1 = (w
(1)
1 −w

(1)
2 ) + (w

(1)
3 −w

(1)
4 )q = a+ bq. Note that a is even iff w

(1)
1 ≡ w(1)

2

(mod 2), and that b is even iff w
(1)
3 ≡ w

(1)
4 (mod 2). Since ∆ is odd, a ≡ b + 1 (mod 2), and

from Equations (10) and (11), we have

c ≡ d (mod 2) (12)
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Analogously, considering z2, we have that θ1q = (w
(2)
1 −w

(2)
2 ) + (w

(2)
3 −w

(2)
4 )q = c+dq, and that

c ≡ d+ 1 (mod 2), which contradicts Equation (12). Therefore, θ1 and θ2 cannot be irrational,

and thus, the theorem follows. 2

3 Concluding remarks

Consider a regular graph Γ of degree ∆, girth 5, and order M∆,2 + 2. Define the graph EΓ on

the same vertex set as Γ, with two vertices being adjacent iff their distance is 3. Then, by using

the same method exposed here, we can prove the following.

Theorem 3.1 There is no regular graph of odd degree ∆ ≥ 3, girth 5, and order M∆,2 +2, such

that EΓ = Cn.
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